首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   10篇
海洋学   1篇
自然地理   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Located at the southern edge of the eastern Himalayan syntaxis, the Central Myanmar Basin (CMB) is divided into several Tertiary sub‐basins that have been almost continuously filled since the Indo‐Asia collision. They are currently drained by the Irrawaddy River, which flows down the eastern Tibetan Plateau and the Sino‐Burman Ranges. Tracing sediment provenance from the CMB is thus critical for reconstructing the past denudation of the Himalayan‐Tibetan orogen; it is especially relevant since a popular drainage scenario involves the capture of the Tsangpo drainage system in Tibet by a precursor to the Irrawaddy River. Here, we document the provenance of sediment samples from the Minbu Sub‐Basin at the southern edge of the CMB, which is traversed by the modern stream of the Irrawaddy River. Samples ranging in age from middle Eocene to Pleistocene were investigated using Nd isotopes, trace element geochemistry and sandstone modal compositions. Our data provide no evidence of a dramatic provenance shift; however, sandstone petrography, trace element ratios and isotopic values display long‐term trends indicating a gradual decrease of the volcanic input and its replacement by a dominant supply from the Burmese basement. These trends are interpreted to reflect the progressive denudation of the Andean‐type volcanic arc that extended onto the Burmese margin, along the flank of the modern Sino‐Burman Ranges, where most of the post‐collisional deformation of central Myanmar is located. Though our results do not exclude an ephemeral or diluted contribution from a past Tsangpo‐Irrawaddy connection, sedimentation rates suggest that this hypothesis is unlikely before the development of a stable Tsangpo‐Brahmaputra River in the Miocene. These results thus suggest that the central Myanmar drainage basin has remained restricted to the Sino‐Burman Ranges since the beginning of the India‐Asia collision.  相似文献   
12.
The drying-induced deformation behaviour of Opalinus Clay and tuff, which are being investigated under international and local collaborative projects for nuclear waste disposal in Switzerland and Japan, was investigated under a no-stress condition in the laboratory to evaluate their generic susceptibility to the formation of excavation damaged zone. The cylindrical core samples of Opalinus Clay and tuff were prepared to a one-dimensional drying condition and submitted to an uncontrolled laboratory environment. The strain evolution, evaporative water loss and environmental entities, such as temperature and relative humidity, were recorded simultaneously and quasi-continuously. It was observed that the drying phase induced significant strain magnitude and damage in Opalinus Clay samples, which was evidenced by the formation of hairy cracks on the surface parallel to the bedding. On the contrary, the strain occurrences in tuff samples were relatively insignificant, and no tendency of cracking was observed. In addition, the quasi-continuous availability of volumetric strains was further used in poroelastic relation for the estimation of capillary suction evolution. The calculated results were validated with pore size distributions obtained from mercury intrusion porosimetry.  相似文献   
13.
The catastrophic storm surge of tropical cyclone Nargis in May 2008 demonstrated Myanmar's exposure to coastal flooding. The investigation of sediments left by tropical cyclone Nargis and its predecessors is an important contribution to prepare for the impact of future tropical cyclones and tsunamis in the region, because they may extend the database for long-term hazard assessment beyond the relatively short instrumental and historical record. This study, for the first time, presents deposits of modern and historical tropical cyclones and tsunamis from the coast of Myanmar. The aim is to establish regional sedimentary characteristics that may help to identify and discriminate cyclones and tsunamis in the geological record, and to document post-depositional changes due to tropical weathering in the first years after deposition. These findings if used to interpret older deposits will extend the existing instrumental record of flooding events in Myanmar. Evaluating deposits that can be related to specific events, such as the 2006 tropical cyclone Mala and the 2004 Indian Ocean tsunami, indicates similar sedimentary characteristics for both types of sediments. Landward thinning and fining trends, littoral sediment sources and sharp lower contacts allow for the differentiation from underlying deposits, while discrimination between tropical cyclone and tsunami origin is challenging based on the applied methods. The modern analogues also demonstrate a rather low preservation potential of the sand sheets due to carbonate dissolution, formation of organic top soils, and coastal erosion. However, in coastal depressions sand sheets of sufficient thickness (>10 cm) may be preserved where the shoreline is prograding or stable. In the most seaward swale of a beach-ridge plain at the Rakhine coast, two sand sheets have been identified in addition to the deposits of 2006 tropical cyclone Mala. Based on a combination of optically stimulated luminescence, radiocarbon and 137Cs dating, the younger sand layer is related to 1982 tropical cyclone Gwa, while the older sand layer is most probably the result of an event that took place prior to 1950. Comparison with historical records indicates that the archive is only sensitive to tropical cyclones of category 4 (or higher) with landfall directly in or a few tens of kilometres north of the study area. While the presented tropical cyclone records are restricted to the last 100 years, optically stimulated luminescence ages of the beach ridges indicate that the swales landward of the one investigated in this study might provide tropical cyclone information for at least the past 700 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号